Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Comput Biol Chem ; 104: 107768, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-2307075

RESUMO

Nucleoside analogs/derivatives (NAs/NDs) with potent antiviral activities are now deemed very convenient choices for the treatment of coronavirus disease 2019 (COVID-19) arisen by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. At the same time, the appearance of a new strain of SARS-CoV-2, the Omicron variant, necessitates multiplied efforts in fighting COVID-19. Counteracting the crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) jointly altogether using the same inhibitor is a quite successful new plan to demultiplicate SARS-CoV-2 particles and eliminate COVID-19 whatever the SARS-CoV-2 subtype is (due to the significant conservation nature of RdRps and ExoNs in the different SARS-CoV-2 strains). Successive in silico screening of known NAs finally disclosed six different promising NAs, which are riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir, respectively, that predictably can act through the planned dual-action mode. Further in vitro evaluations affirmed the anti-SARS-CoV-2/anti-COVID-19 potentials of these NAs, with riboprine and forodesine being at the top. The two NAs are able to effectively antagonize the replication of the new virulent SARS-CoV-2 strains with considerably minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 189 and 408 nM for riboprine and 207 and 657 nM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. Furthermore, the favorable structural characteristics of the two molecules qualify them for varied types of isosteric and analogistic chemical derivatization. In one word, the present important outcomes of this comprehensive dual study revealed the anticipating repurposing potentials of some known nucleosides, led by the two NAs riboprine and forodesine, to successfully discontinue the coronaviral-2 polymerase/exoribonuclease interactions with RNA nucleotides in the SARS-CoV-2 Omicron variant (BA.5 sublineage) and accordingly alleviate COVID-19 infections, motivating us to initiate the two drugs' diverse anti-COVID-19 pharmacological evaluations to add both of them betimes in the COVID-19 therapeutic protocols.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Nucleosídeos/farmacologia , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/farmacologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/farmacologia , Antivirais/farmacologia , Antivirais/química
2.
J Org Chem ; 88(2): 838-851, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2234736

RESUMO

In the present study, we herein report a DDQ-catalyzed new protocol for the synthesis of substituted 3-acylindoles. Being a potential system for virtual hydrogen storage, introduction of catalytic DDQ in combination with Fe(NO3)3·9H2O and molecular oxygen as co-catalysts offers a regioselective oxo-functionalization of C-3 alkyl-/aryllidine indolines even with scale-up investigations. Intermediate isolation, their spectroscopic characterization, and the density functional theory calculations indicate that the method involves dehydrogenative allylic hydroxylation and 1,3-functional group isomerization/aromatization followed by terminal oxidation to afford 3-acylindoles quantitatively with very high regioselectivity. This method is very general for a large number of substrates with varieties of functional groups tolerance emerging high-yield outcome. Moreover, molecular docking studies were performed for some selected ligands with an RNA-dependent RNA polymerase complex (RdRp complex) of SARS-CoV-2 to illustrate the binding potential of those ligands. The docking results revealed that few of the ligands possess the potential to inhibit the RdRp of SARS-Cov-2 with binding energies (-6.7 to -8.19 kcal/mol), which are comparably higher with respect to the reported binding energies of the conventional re-purposed drugs such as Remdesivir, Ribavirin, and so forth (-4 to -7 kcal/mol).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Ligantes , Antivirais/farmacologia , Antivirais/química , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Indóis/farmacologia
3.
Signal Transduct Target Ther ; 7(1): 400, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: covidwho-2230613

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has devastated global health. Identifying key host factors essential for SARS-CoV-2 RNA replication is expected to unravel cellular targets for the development of broad-spectrum antiviral drugs which have been quested for the preparedness of future viral outbreaks. Here, we have identified host proteins that associate with nonstructural protein 12 (nsp12), the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 using a mass spectrometry (MS)-based proteomic approach. Among the candidate factors, CDK2 (Cyclin-dependent kinase 2), a member of cyclin-dependent kinases, interacts with nsp12 and causes its phosphorylation at T20, thus facilitating the assembly of the RdRp complex consisting of nsp12, nsp7 and nsp8 and promoting efficient synthesis of viral RNA. The crucial role of CDK2 in viral RdRp function is further supported by our observation that CDK2 inhibitors potently impair viral RNA synthesis and SARS-CoV-2 infection. Taken together, we have discovered CDK2 as a key host factor of SARS-CoV-2 RdRp complex, thus serving a promising target for the development of SARS-CoV-2 RdRp inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Quinase 2 Dependente de Ciclina/genética , Proteômica , COVID-19/genética , Proteínas não Estruturais Virais/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo
4.
J Mol Biol ; 435(8): 168008, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2230334

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replicates and evades detection using ER membranes and their associated protein machinery. Among these hijacked human proteins is selenoprotein S (selenos). This selenoprotein takes part in the protein quality control, signaling, and the regulation of cytokine secretion. While the role of selenos in the viral life cycle is not yet known, it has been reported to interact with SARS-CoV-2 nonstructural protein 7 (nsp7), a viral protein essential for the replication of the virus. We set to study whether selenos and nsp7 interact directly and if they can still bind when nsp7 is bound to the replication and transcription complex of the virus. Using biochemical assays, we show that selenos binds directly to nsp7. In addition, we found that selenos can bind to nsp7 when it is in a complex with the coronavirus's minimal replication and transcription complex, comprised of nsp7, nsp8, and the RNA-dependent RNA polymerase nsp12. In addition, through crosslinking experiments, we mapped the interaction sites of selenos and nsp7 in the replication complex and showed that the hydrophobic segment of selenos is essential for binding to nsp7. This arrangement leaves an extended helix and the intrinsically disordered segment of selenos-including the reactive selenocysteine-exposed and free to potentially recruit additional proteins to the replication and transcription complex.


Assuntos
Proteínas de Membrana , SARS-CoV-2 , Selenoproteínas , Transcrição Gênica , Proteínas não Estruturais Virais , Replicação Viral , Humanos , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Selenoproteínas/genética , Selenoproteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas de Membrana/metabolismo
5.
Structure ; 28(8): 874-878, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2132441

RESUMO

During global pandemics, the spread of information needs to be faster than the spread of the virus in order to ensure the health and safety of human populations worldwide. In our current crisis, the demand for SARS-CoV-2 drugs and vaccines highlights the importance of biological targets and their three-dimensional shape. In particular, structural biology as a field was poised to quickly respond to crises due to previous experience and expertise and because of its early adoption of open access practices.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Proteínas Virais/química , COVID-19 , Proteases 3C de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , Cisteína Endopeptidases/química , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Biologia Molecular , Conformação Proteica , RNA Polimerase Dependente de RNA/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química
6.
J Chem Inf Model ; 62(20): 4916-4927, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2062143

RESUMO

The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 outbreak that is affecting the entire planet. As the pandemic is still spreading worldwide, with multiple mutations of the virus, it is of interest and of help to employ computational methods for identifying potential inhibitors of the enzymes responsible for viral replication. Attractive antiviral nucleotide analogue RNA-dependent RNA polymerase (RdRp) chain terminator inhibitors are investigated with this purpose. This study, based on molecular dynamics (MD) simulations, addresses the important aspects of the incorporation of an endogenously synthesized nucleoside triphosphate, ddhCTP, in comparison with the natural nucleobase cytidine triphosphate (CTP) in RdRp. The ddhCTP species is the product of the viperin antiviral protein as part of the innate immune response. The absence of the ribose 3'-OH in ddhCTP could have important implications in its inhibitory mechanism of RdRp. We built an in silico model of the RNA strand embedded in RdRp using experimental methods, starting from the cryo-electron microscopy structure and exploiting the information obtained by spectrometry on the RNA sequence. We determined that the model was stable during the MD simulation time. The obtained results provide deeper insights into the incorporation of nucleoside triphosphates, whose molecular mechanism by the RdRp active site still remains elusive.


Assuntos
COVID-19 , Citidina Trifosfato , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Microscopia Crioeletrônica , Citidina Trifosfato/química , Simulação de Dinâmica Molecular , Nucleosídeos , Nucleotídeos , Ribose , RNA Viral , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo
7.
Nat Commun ; 13(1): 621, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1671551

RESUMO

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Assuntos
Antivirais/química , Antivirais/farmacologia , Guanosina Monofosfato/análogos & derivados , Fosforamidas/química , Fosforamidas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/enzimologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , COVID-19/virologia , Microscopia Crioeletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanosina Monofosfato/química , Guanosina Monofosfato/farmacologia , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteínas Virais/genética
8.
J Biol Chem ; 298(2): 101529, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1587355

RESUMO

Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Modelos Moleculares , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Vírus de RNA de Sentido Negativo/efeitos dos fármacos , Vírus de RNA de Sentido Negativo/enzimologia , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/enzimologia , Vírus de RNA de Cadeia Positiva/efeitos dos fármacos , Vírus de RNA de Cadeia Positiva/enzimologia , Vírus de RNA/efeitos dos fármacos , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos
9.
Sci Rep ; 11(1): 23465, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1556248

RESUMO

Human coronavirus NL63 (HCoV-NL63) mainly affects young children and immunocompromised patients, causing morbidity and mortality in a subset of patients. Since no specific treatment is available, this study aims to explore the anti-SARS-CoV-2 agents including favipiravir and remdesivir for treating HCoV-NL63 infection. We first successfully modelled the 3D structure of HCoV-NL63 RNA-dependent RNA polymerase (RdRp) based on the experimentally solved SARS-CoV-2 RdRp structure. Molecular docking indicated that favipiravir has similar binding affinities to SARS-CoV-2 and HCoV-NL63 RdRp with LibDock scores of 75 and 74, respectively. The LibDock scores of remdesivir to SARS-CoV-2 and HCoV-NL63 were 135 and 151, suggesting that remdesivir may have a higher affinity to HCoV-NL63 compared to SARS-CoV-2 RdRp. In cell culture models infected with HCoV-NL63, both favipiravir and remdesivir significantly inhibited viral replication and production of infectious viruses. Overall, remdesivir compared to favipiravir is more potent in inhibiting HCoV-NL63 in cell culture. Importantly, there is no evidence of resistance development upon long-term exposure to remdesivir. Furthermore, combining favipiravir or remdesivir with the clinically used antiviral cytokine interferon-alpha resulted in synergistic effects. These findings provided a proof-of-concept that anti-SARS-CoV-2 drugs, in particular remdesivir, have the potential to be repurposed for treating HCoV-NL63 infection.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Amidas/química , Antivirais/química , Coronavirus Humano NL63/enzimologia , Pirazinas/química , RNA Polimerase Dependente de RNA/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/metabolismo , Alanina/farmacologia , Amidas/metabolismo , Amidas/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , Técnicas de Cultura de Células , Linhagem Celular , Coronavirus Humano NL63/fisiologia , Haplorrinos , Humanos , Simulação de Acoplamento Molecular , Pirazinas/metabolismo , Pirazinas/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Infect Genet Evol ; 96: 105155, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1525880

RESUMO

The present study aimed to predict the binding potential of carbon nanotube and nano fullerene towards multiple targets of SARS-CoV-2. Based on the virulent functions, the spike glycoprotein, RNA-dependent RNA polymerase, main protease, papain-like protease, and RNA binding domain of the nucleocapsid proteins of SARS-CoV-2 were prioritized as the molecular targets and their three-dimensional (3D) structures were retrieved from the Protein Data Bank. The 3D structures of carbon nanotubes and nano-fullerene were computationally modeled, and the binding potential of these nanoparticles to the selected molecular targets was predicted by molecular docking and molecular dynamic (MD) simulations. The drug-likeness and pharmacokinetic features of the lead molecules were computationally predicted. The current study suggested that carbon fullerene and nanotube demonstrated significant binding towards the prioritized multi-targets of SARS-CoV-2. Interestingly, carbon nanotube showed better interaction with these targets when compared to carbon fullerene. MD simulation studies clearly showed that the interaction of nanoparticles and selected targets possessed stability and conformational changes. This study revealed that carbon nanotubes and fullerene are probably used as effectual binders to multiple targets of SARS-CoV-2, and the study offers insights into the experimental validation and highlights the relevance of utilizing carbon nanomaterials as a therapeutic remedy against COVID-19.


Assuntos
Fulerenos/metabolismo , Nanotubos de Carbono , SARS-CoV-2/metabolismo , Proteínas Virais/química , Antivirais/química , Antivirais/metabolismo , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Fulerenos/química , Fulerenos/farmacocinética , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Fosfoproteínas/química , Fosfoproteínas/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais/metabolismo
11.
Cell Rep ; 37(4): 109882, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1525720

RESUMO

Remdesivir (RDV), a nucleotide analog with broad-spectrum features, has exhibited effectiveness in COVID-19 treatment. However, the precise working mechanism of RDV when targeting the viral RNA-dependent RNA polymerase (RdRP) has not been fully elucidated. Here, we solve a 3.0-Å structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RdRP elongation complex (EC) and assess RDV intervention in polymerase elongation phase. Although RDV could induce an "i+3" delayed termination in meta-stable complexes, only pausing and subsequent elongation are observed in the EC. A comparative investigation using an enterovirus RdRP further confirms similar delayed intervention and demonstrates that steric hindrance of the RDV-characteristic 1'-cyano at the -4 position is responsible for the "i+3" intervention, although two representative Flaviviridae RdRPs do not exhibit similar behavior. A comparison of representative viral RdRP catalytic complex structures indicates that the product RNA backbone encounters highly conserved structural elements, highlighting the broad-spectrum intervention potential of 1'-modified nucleotide analogs in anti-RNA virus drug development.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , RNA Polimerase Dependente de RNA/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Proteínas Virais/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Microscopia Crioeletrônica , Humanos , RNA Viral/química , RNA Viral/efeitos dos fármacos , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/química , Proteínas Virais/química , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
12.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1470887

RESUMO

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has infected >235 million people and killed over 4.8 million individuals worldwide. Although vaccines have been developed for prophylactic management, there are no clinically proven antivirals to treat the viral infection. Continuous efforts are being made all over the world to develop effective drugs but these are being delayed by periodic outbreak of mutated SARS-CoV-2 and a lack of knowledge of molecular mechanisms underlying viral pathogenesis and post-infection complications. In this regard, the involvement of Annexin A2 (AnxA2), a lipid-raft related phospholipid-binding protein, in SARS-CoV-2 attachment, internalization, and replication has been discussed. In addition to the evidence from published literature, we have performed in silico docking of viral spike glycoprotein and RNA-dependent RNA polymerase with human AnxA2 to find the molecular interactions. Overall, this review provides the molecular insights into a potential role of AnxA2 in the SARS-CoV-2 pathogenesis and post-infection complications, especially thrombosis, cytokine storm, and insulin resistance.


Assuntos
Anexina A2/metabolismo , COVID-19/patologia , Anexina A2/química , COVID-19/virologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/patologia , Humanos , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Trombose/metabolismo , Trombose/patologia , Internalização do Vírus
13.
Virology ; 564: 33-38, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1447220

RESUMO

Endemic seasonal coronaviruses cause morbidity and mortality in a subset of patients, but no specific treatment is available. Molnupiravir is a promising pipeline antiviral drug for treating SARS-CoV-2 infection potentially by targeting RNA-dependent RNA polymerase (RdRp). This study aims to evaluate the potential of repurposing molnupiravir for treating seasonal human coronavirus (HCoV) infections. Molecular docking revealed that the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC), has similar binding affinity to RdRp of SARS-CoV-2 and seasonal HCoV-NL63, HCoV-OC43 and HCoV-229E. In cell culture models, treatment of molnupiravir effectively inhibited viral replication and production of infectious viruses of the three seasonal coronaviruses. A time-of-drug-addition experiment indicates the specificity of molnupiravir in inhibiting viral components. Furthermore, combining molnupiravir with the protease inhibitor GC376 resulted in enhanced antiviral activity. Our findings highlight that the great potential of repurposing molnupiravir for treating seasonal coronavirus infected patients.


Assuntos
Coronavirus Humano 229E/genética , Infecções por Coronavirus/tratamento farmacológico , Coronavirus Humano NL63/genética , Coronavirus Humano OC43/genética , Citidina/análogos & derivados , Hidroxilaminas/farmacologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Resfriado Comum/tratamento farmacológico , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/fisiologia , Coronavirus Humano NL63/efeitos dos fármacos , Coronavirus Humano NL63/fisiologia , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/fisiologia , Citidina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Pirrolidinas/farmacologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Estações do Ano , Ácidos Sulfônicos/farmacologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
14.
Commun Biol ; 4(1): 999, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1371605

RESUMO

The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs.


Assuntos
SARS-CoV-2/enzimologia , Dimerização , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo
15.
Nat Struct Mol Biol ; 28(9): 740-746, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1354110

RESUMO

Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.


Assuntos
COVID-19/prevenção & controle , Citidina/análogos & derivados , Hidroxilaminas/metabolismo , Mutagênese/genética , RNA Viral/genética , SARS-CoV-2/genética , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Sequência de Bases , COVID-19/virologia , Citidina/química , Citidina/metabolismo , Citidina/farmacologia , Humanos , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Modelos Moleculares , Estrutura Molecular , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , RNA Viral/química , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
16.
Nucleic Acids Res ; 49(15): 8822-8835, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1343703

RESUMO

The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.


Assuntos
Nidovirales/enzimologia , Nucleotídeos/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Coenzimas/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Difosfatos/farmacologia , Difosfonatos/farmacologia , Guanosina Trifosfato/metabolismo , Manganês , Modelos Moleculares , Nidovirales/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Uridina Trifosfato/metabolismo
17.
Am J Physiol Endocrinol Metab ; 321(2): E246-E251, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1285097

RESUMO

Vitamin D deficiency significantly correlates with the severity of SARS-CoV-2 infection. Molecular docking-based virtual screening studies predict that novel vitamin D and related lumisterol hydroxymetabolites are able to bind to the active sites of two SARS-CoV-2 transcription machinery enzymes with high affinity. These enzymes are the main protease (Mpro) and RNA-dependent RNA polymerase (RdRP), which play important roles in viral replication and establishing infection. Based on predicted binding affinities and specific interactions, we identified 10 vitamin D3 (D3) and lumisterol (L3) analogs as likely binding partners of SARS-CoV-2 Mpro and RdRP and, therefore, tested their ability to inhibit these enzymes. Activity measurements demonstrated that 25(OH)L3, 24(OH)L3, and 20(OH)7DHC are the most effective of the hydroxymetabolites tested at inhibiting the activity of SARS-CoV-2 Mpro causing 10%-19% inhibition. These same derivatives as well as other hydroxylumisterols and hydroxyvitamin D3 metabolites inhibited RdRP by 50%-60%. Thus, inhibition of these enzymes by vitamin D and lumisterol metabolites may provide a novel approach to hindering the SARS-CoV-2 infection.NEW & NOTEWORTHY Active forms of vitamin D and lumisterol can inhibit SARS-CoV-2 replication machinery enzymes, which indicates that novel vitamin D and lumisterol metabolites are candidates for antiviral drug research.


Assuntos
Antivirais/farmacologia , Ergosterol/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Vitamina D/farmacologia , Antivirais/química , Ergosterol/análogos & derivados , Ergosterol/química , Ergosterol/farmacologia , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/fisiologia , Vitamina D/química
18.
Molecules ; 26(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1282543

RESUMO

Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proteases 3C de Coronavírus/química , Poríferos/química , Poríferos/metabolismo , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/efeitos dos fármacos , Amino Açúcares/química , Amino Açúcares/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacocinética , Biologia Computacional , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Piridinas/química , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19
19.
Comput Biol Med ; 135: 104555, 2021 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1260703

RESUMO

BACKGROUND: Non-structural protein 1 (Nsp1), a virulence agent of SARS-CoV-2, has emerged as an important target for drug discovery. Nsp1 shuts down the host gene function by associating with the 40S ribosomal subunit. METHODS: Molecular interactions, drug-likeness, physiochemical property predictions, and robust molecular dynamics (MD) simulations were employed to discover novel Nsp1 inhibitors. In this study, we evaluated a series of molecules based on the plant (Cedrus deodara) derived α,ß,γ-Himachalenes scaffolds. RESULTS: The results obtained from estimated affinity and ligand efficiency suggested that BCH10, BCH15, BCH16, and BCH17 could act as potential inhibitors of Nsp1. Moreover, MD simulations comprising various MD driven time-dependent analyses and thermodynamic free energy calculations also suggested stable protein-ligand complexes and strong interactions with the binding site. Furthermore, the selected molecules passed drug likeliness parameters and the physiochemical property analysis showed acceptable bioactivity scores. CONCLUSION: The structural parameters of dynamic simulations revealed that the reported molecules could act as lead compounds against SARS-CoV-2 Nsp1 protein.


Assuntos
Cedrus/química , Compostos Fitoquímicos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2 , Proteínas não Estruturais Virais/antagonistas & inibidores , Sítios de Ligação , RNA Polimerase Dependente de RNA/química , Subunidades Ribossômicas Menores de Eucariotos , Proteínas não Estruturais Virais/química
20.
PLoS One ; 16(5): e0251368, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1242246

RESUMO

COVID-19 is challenging healthcare preparedness, world economies, and livelihoods. The infection and death rates associated with this pandemic are strikingly variable in different countries. To elucidate this discrepancy, we analyzed 2431 early spread SARS-CoV-2 sequences from GISAID. We estimated continental-wise admixture proportions, assessed haplotype block estimation, and tested for the presence or absence of strains' recombination. Herein, we identified 1010 unique missense mutations and seven different SARS-CoV-2 clusters. In samples from Asia, a small haplotype block was identified, whereas samples from Europe and North America harbored large and different haplotype blocks with nonsynonymous variants. Variant frequency and linkage disequilibrium varied among continents, especially in North America. Recombination between different strains was only observed in North American and European sequences. In addition, we structurally modelled the two most common mutations, Spike_D614G and Nsp12_P314L, which suggested that these linked mutations may enhance viral entry and replication, respectively. Overall, we propose that genomic recombination between different strains may contribute to SARS-CoV-2 virulence and COVID-19 severity and may present additional challenges for current treatment regimens and countermeasures. Furthermore, our study provides a possible explanation for the substantial second wave of COVID-19 presented with higher infection and death rates in many countries.


Assuntos
Recombinação Genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Virulência/fisiologia , COVID-19/patologia , COVID-19/virologia , Bases de Dados Genéticas , Variação Genética , Haplótipos , Humanos , Desequilíbrio de Ligação , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Análise de Componente Principal , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA